MathDB
Iteration of f converges almost everywhere

Source: 2021 Miklos Schweitzer, P5

November 2, 2021
real analysis

Problem Statement

Let f(x)=1+cos(2πx)2f(x)=\frac{1+\cos(2 \pi x)}{2}, for xRx \in \mathbb{R}, and fn=ffnf^n=\underbrace{ f \circ \cdots \circ f}_{n}. Is it true that for Lebesgue almost every xx, limnfn(x)=1\lim_{n \to \infty} f^n(x)=1?