MathDB
2023 Putnam A1

Source:

December 3, 2023
PutnamPutnam 2023

Problem Statement

For a positive integer nn, let fn(x)=cos(x)cos(2x)cos(3x)cos(nx)f_n(x)=\cos (x) \cos (2 x) \cos (3 x) \cdots \cos (n x). Find the smallest nn such that fn(0)>2023\left|f_n^{\prime \prime}(0)\right|>2023.