MathDB
2023 China TST Problem 11

Source: 2023 China TST Problem 11

March 18, 2023
inequalitiesChina TSTProbabilistic Method

Problem Statement

Let nN+.n\in\mathbb N_+. For 1i,j,kn,aijk{1,1}.1\leq i,j,k\leq n,a_{ijk}\in\{ -1,1\} . Prove that: x1,x2,,xn,y1,y2,,yn,z1,z2,,zn{1,1},\exists x_1,x_2,\cdots ,x_n,y_1,y_2,\cdots ,y_n,z_1,z_2,\cdots ,z_n\in \{-1,1\} , satisfy i=1nj=1nk=1naijkxiyjzk>n23.\left| \sum\limits_{i=1}^n\sum\limits_{j=1}^n\sum\limits_{k=1}^na_{ijk}x_iy_jz_k\right| >\frac {n^2}3. Created by Yu Deng