MathDB
Infinite Sum Is Zero

Source: KöMaL A. 810

March 23, 2022
komalalgebracombinatoricsseries

Problem Statement

For all positive integers n,n, let rnr_n be defined as rn=i=0n(1)i(ni)1(i+1)!.r_n=\sum_{i=0}^n(-1)^i\binom{n}{i}\frac{1}{(i+1)!}.Prove that r=1ri=0.\sum_{r=1}^\infty r_i=0.