MathDB
[ABC] = 1/2 [AC'BA'C B'$] convex , <A+<B+<C =<A' +<B'+<C'

Source: TOT 532 1997 Spring J A4 - - Tournament Of Towns

September 11, 2024
geometryangleshexagonareas

Problem Statement

ACBACBAC' BA'C B' is a convex hexagon such that AB=ACAB' = AC', BC=BABC' = BA', CA=CBCA' = CB' and A+B+C=A+B+C\angle A +\angle B + \angle C = \angle A' + \angle B' + \angle C'. Prove that the area of the triangle ABCABC is half the area of the hexagon.
(V Proizvolov)