MathDB
Putnam 1975 B3

Source: Putnam 1975

February 17, 2022
Putnamsupremuminequalities

Problem Statement

Let nn be a positive integer. Let S={a1,,ak}S=\{a_1,\ldots, a_{k}\} be a finite collection of at least nn not necessarily distinct positive real numbers. Let f(S)=(i=1kai)nf(S)=\left(\sum_{i=1}^{k} a_{i}\right)^{n} and g(S)=1i1<<inkai1ain.g(S)=\sum_{1\leq i_{1}<\ldots<i_{n} \leq k} a_{i_{1}}\cdot\ldots\cdot a_{i_{n}}. Determine supSg(S)f(S)\sup_{S} \frac{g(S)}{f(S)}.