MathDB
Problems
Contests
Undergraduate contests
Putnam
1975 Putnam
B3
Putnam 1975 B3
Putnam 1975 B3
Source: Putnam 1975
February 17, 2022
Putnam
supremum
inequalities
Problem Statement
Let
n
n
n
be a positive integer. Let
S
=
{
a
1
,
…
,
a
k
}
S=\{a_1,\ldots, a_{k}\}
S
=
{
a
1
,
…
,
a
k
}
be a finite collection of at least
n
n
n
not necessarily distinct positive real numbers. Let
f
(
S
)
=
(
∑
i
=
1
k
a
i
)
n
f(S)=\left(\sum_{i=1}^{k} a_{i}\right)^{n}
f
(
S
)
=
(
i
=
1
∑
k
a
i
)
n
and
g
(
S
)
=
∑
1
≤
i
1
<
…
<
i
n
≤
k
a
i
1
⋅
…
⋅
a
i
n
.
g(S)=\sum_{1\leq i_{1}<\ldots<i_{n} \leq k} a_{i_{1}}\cdot\ldots\cdot a_{i_{n}}.
g
(
S
)
=
1
≤
i
1
<
…
<
i
n
≤
k
∑
a
i
1
⋅
…
⋅
a
i
n
.
Determine
sup
S
g
(
S
)
f
(
S
)
\sup_{S} \frac{g(S)}{f(S)}
sup
S
f
(
S
)
g
(
S
)
.
Back to Problems
View on AoPS