MathDB
function from VietNam

Source: VietNam TST 2004, problem 2

May 9, 2004
functioncalculusintegrationsearchalgebra unsolvedalgebra

Problem Statement

Find all real values of α\alpha, for which there exists one and only one function f:RRf: \mathbb{R} \mapsto \mathbb{R} and satisfying the equation f(x2+y+f(y))=(f(x))2+αy f(x^2 + y + f(y)) = (f(x))^2 + \alpha \cdot y for all x,yRx, y \in \mathbb{R}.