MathDB
Miklos Schweitzer 1977_6

Source:

January 25, 2009
functionlogarithmsreal analysisreal analysis unsolved

Problem Statement

Let f f be a real function defined on the positive half-axis for which f(xy)\equal{}xf(y)\plus{}yf(x) and f(x\plus{}1) \leq f(x) hold for every positive x x and y y. Show that if f(1/2)\equal{}1/2, then f(x)\plus{}f(1\minus{}x) \geq \minus{}x \log_2 x \minus{}(1\minus{}x) \log_2 (1\minus{}x) for every x(0,1) x\in (0,1). Z. Daroczy, Gy. Maksa