MathDB
Miklós Schweitzer 2004, Problem 8

Source: Miklós Schweitzer 2004

July 30, 2016
college contestsMiklos Schweitzercomplex numberscomplex analysisreal analysis

Problem Statement

Prove that for any 0<δ<2π0<\delta <2\pi there exists a number m>1m>1 such that for any positive integer nn and unimodular complex numbers z1,,znz_1,\ldots, z_n with z1v++znv=0z_1^v+\dots+z_n^v=0 for all integer exponents 1vm1\le v\le m, any arc of length δ\delta of the unit circle contains at least one of the numbers z1,,znz_1,\ldots, z_n.