MathDB
There exists k such that 2001!a_k<k

Source: Baltic Way 2001

November 17, 2010
floor functionalgebra proposedalgebra

Problem Statement

Let a0,a1,a2,a_0, a_1, a_2,\ldots be a sequence of real numbers satisfying a0=1a_0=1 and an=a7n/9+an/9a_n=a_{\lfloor 7n/9\rfloor}+a_{\lfloor n/9\rfloor} for n=1,2,n=1, 2,\ldots Prove that there exists a positive integer kk with ak<k2001!a_k<\frac{k}{2001!}.