MathDB
Problems
Contests
International Contests
Kvant Problems
Kvant 2020
M2616
Sum of powers of near-factorials
Sum of powers of near-factorials
Source: Kvant Magazine No. 8 2020 M2616
March 9, 2023
number theory
Divisibility
Kvant
Problem Statement
Let
p
>
5
p>5
p
>
5
be a prime number. Prove that the sum
(
(
p
−
1
)
!
1
)
p
+
(
(
p
−
1
)
!
2
)
p
+
⋯
+
(
(
p
−
1
)
!
p
−
1
)
p
\left(\frac{(p-1)!}{1}\right)^p+\left(\frac{(p-1)!}{2}\right)^p+\cdots+\left(\frac{(p-1)!}{p-1}\right)^p
(
1
(
p
−
1
)!
)
p
+
(
2
(
p
−
1
)!
)
p
+
⋯
+
(
p
−
1
(
p
−
1
)!
)
p
is divisible by
p
3
p^3
p
3
.
Back to Problems
View on AoPS