MathDB
Problem 39

Source:

July 1, 2010
Gausscalculusintegrationtrigonometry

Problem Statement

Calculate the Gauss integral
(dA,dB,AB)AB3\oint\frac{(d\overrightarrow{A},d\overrightarrow{B},\overrightarrow{A}-\overrightarrow{B})}{|\overrightarrow{A}-\overrightarrow{B}|^3}
where A\overrightarrow{A} runs along the curve x=cosαx=\cos\alpha, y=sinαy=\sin\alpha, z=0z=0, and B\overrightarrow{B} along the curve x=2cos2βx=2\cos^2\beta, y=12sinβy=\frac12\sin\beta, z=sin2βz=\sin2\beta.
Note: that \oint was supposed to be oiint (i.e. \iint with a circle) but the command does not work on AoPS.