Given the positive integer m≥2, n≥3. Define the following set
S={(a,b)∣a∈{1,2,⋯,m},b∈{1,2,⋯,n}}.
Let A be a subset of S. If there does not exist positive integers x1,x2,x3,y1,y2,y3 such that x1<x2<x3,y1<y2<y3 and
(x1,y2),(x2,y1),(x2,y2),(x2,y3),(x3,y2)∈A.
Determine the largest possible number of elements in A.