MathDB
v_2 (\prod_{n=1}^{2^m}\binom{2n}{n} )=m2^{m-1}+1

Source: Balkan BMO Shortlist 2015 N5

August 5, 2019
number theorymaximumpower of 2dividesProductIMO Shortlist

Problem Statement

For a positive integer ss, denote with v2(s)v_2(s) the maximum power of 22 that divides ss. Prove that for any positive integer mm that: v2(n=12m(2nn))=m2m1+1.v_2\left(\prod_{n=1}^{2^m}\binom{2n}{n}\right)=m2^{m-1}+1.
(FYROM)