MathDB
Putnam 1987 B2

Source:

August 5, 2019
Putnam

Problem Statement

Let r,sr,s and tt be integers with 0r0 \leq r, 0s0 \leq s and r+str+s \leq t. Prove that (s0)(tr)+(s1)(tr+1)++(ss)(tr+s)=t+1(t+1s)(tsr). \frac{\binom s0}{\binom tr} + \frac{\binom s1}{\binom{t}{r+1}} + \cdots + \frac{\binom ss}{\binom{t}{r+s}} = \frac{t+1}{(t+1-s)\binom{t-s}{r}}.