MathDB
Prove this algebraic inequality

Source: 2019 Jozsef Wildt International Math Competition

May 20, 2020
ProductSummationinequalities

Problem Statement

Let a1,a2,,ana_1,a_2,\cdots ,a_n be nn positive numbers such that i=1nai=n\sum \limits_{i=1}^n\sqrt{a_i}=\sqrt{n}. Theni=1n1(1+1ai)ai+1(1+1an)a11+ni=1nai\prod \limits_{i=1}^{n-1}\left(1+\frac{1}{a_i}\right)^{a_{i+1}}\left(1+\frac{1}{a_n}\right)^{a_1}\geq 1+\frac{n}{\sum \limits_{i=1}^na_i}