MathDB
P5 Cono Sur 2021

Source: Cono Sur 2021 #5

November 30, 2021
algebra

Problem Statement

Given an integer n3n \geq 3, determine if there are nn integers b1,b2,,bnb_1, b_2, \dots , b_n, distinct two-by-two (that is, bibjb_i \neq b_j for all iji \neq j) and a polynomial P(x)P(x) with coefficients integers, such that P(b1)=b2,P(b2)=b3,,P(bn1)=bnP(b_1) = b_2, P(b_2) = b_3, \dots , P(b_{n-1}) = b_n and P(bn)=b1P(b_n) = b_1.