MathDB
f(k_0) < f(k), f(k) = k + [ n/k ] , k_0 = [ \sqrt{n} ] + 1

Source: Netherlands - Dutch NMO 1976 p5

January 28, 2023
inequalitiesalgebrafloor function

Problem Statement

f(k)=k+[nk]f(k) = k + \left[ \frac{n}{k}\right ] ,k{1,2,...,n}k \in \{1,2,..., n\}, k0=[n]+1k_0 =\left[ \sqrt{n} \right] + 1.
Prove that f(k0)<f(k)f(k_0) < f(k) if k{1,2,...,n}k \in \{1,2,..., n\}