MathDB
Albanian TST 2014 4th problem

Source:

April 22, 2014
functionalgebra solvedalgebraBritishMathematicalOlympiad

Problem Statement

Find all functions f:RRf:\mathbb{R}\to\mathbb{R} such that f(x)f(y)=f(x+y)+xyf(x)f(y)=f(x+y)+xy for all x,yRx,y\in \mathbb{R}.