MathDB
2013 China IMO Team Selection Test 1 Day 1 Q2

Source: 13 Mar 2013

March 29, 2013
pigeonhole principlenumber theory proposednumber theory

Problem Statement

For the positive integer nn, define f(n)=minmZ2mnf(n)=\min\limits_{m\in\Bbb Z}\left|\sqrt2-\frac mn\right|. Let {ni}\{n_i\} be a strictly increasing sequence of positive integers. CC is a constant such that f(ni)<Cni2f(n_i)<\dfrac C{n_i^2} for all i{1,2,}i\in\{1,2,\ldots\}. Show that there exists a real number q>1q>1 such that niqi1n_i\geqslant q^{i-1} for all i{1,2,}i\in\{1,2,\ldots \}.