Let n be a positive integer, and let Vn be the set of integer (2n+1)-tuples v=(s0,s1,⋯,s2n−1,s2n) for which s0=s2n=0 and ∣sj−sj−1∣=1 for j=1,2,⋯,2n. Define
q(v)=1+j=1∑2n−13sj,
and let M(n) be the average of q(v)1 over all v∈Vn. Evaluate M(2020).