MathDB
Functional Equation With Continuity

Source: Miklos Schweitzer

April 8, 2016
algebrafunctional equation

Problem Statement

Prove that all continuous solutions of the functional equation
(f(x)f(y))(f(x+y2)f(xy))=0 , x,y(0,+)\left(f(x)-f(y)\right)\left(f\left(\frac{x+y}{2}\right)-f\left(\sqrt{xy}\right)\right)=0 \ , \ \forall x,y\in (0,+\infty)
are the constant functions.