MathDB
Fake NT \gcd(a_1, a_2, \dots, a_n)

Source: INAMO 2020 P8

October 14, 2020
number theoryconstructionBoundingbait

Problem Statement

Determine the smallest natural number n>2n > 2, or show that no such natural numbers nn exists, that satisfy the following condition: There exists natural numbers a1,a2,,ana_1, a_2, \dots, a_n such that gcd(a1,a2,,an)=k=1n1(1gcd(ak,ak+1)+1gcd(ak,ak+2)++1gcd(ak,an))nk terms \gcd(a_1, a_2, \dots, a_n) = \sum_{k = 1}^{n - 1} \underbrace{\left( \frac{1}{\gcd(a_k, a_{k + 1})} + \frac{1}{\gcd(a_k, a_{k + 2})} + \dots + \frac{1}{\gcd(a_k, a_n)} \right)}_{n - k \ \text{terms}}