MathDB
Complex Number

Source: 2000 National High School Mathematics League, Exam One, Problem 6

March 10, 2020
complex numbers

Problem Statement

Let ω=cosπ5+isinπ5\omega=\cos\frac{\pi}{5}+\text{i}\sin\frac{\pi}{5}, which equation has roots ω,ω3,ω7,ω9\omega,\omega^3,\omega^7,\omega^9? (A)x4+x3+x2+x+1=0(B)x4x3+x2x+1=0\text{(A)}x^4+x^3+x^2+x+1=0\qquad\text{(B)}x^4-x^3+x^2-x+1=0 (C)x4x3x2+x+1=0(D)x4+x3+x2x+1=0\text{(C)}x^4-x^3-x^2+x+1=0\qquad\text{(D)}x^4+x^3+x^2-x+1=0