MathDB
Cyclic inequality

Source: Japan Mathematical Olympiad Finals 2002 , Problem 4

March 22, 2006
inequalitiesinequalities proposed

Problem Statement

Let n3n\geq 3 be natural numbers, and let a1, a2, , an,  b1, b2, , bna_1,\ a_2,\ \cdots,\ a_n,\ \ b_1,\ b_2,\ \cdots,\ b_n be positive numbers such that a1+a2++an=1, b12+b22++bn2=1.a_1+a_2+\cdots +a_n=1,\ b_1^2+b_2^2+\cdots +b_n^2=1. Prove that a1(b1+a2)+a2(b2+a3)++an(bn+a1)<1.a_1(b_1+a_2)+a_2(b_2+a_3)+\cdots +a_n(b_n+a_1)<1.