MathDB
Problems
Contests
National and Regional Contests
China Contests
China National Olympiad
1996 China National Olympiad
2
Sum of x is 1
Sum of x is 1
Source: CMO-1996-5
January 3, 2006
inequalities
trigonometry
calculus
derivative
integration
Problem Statement
Let
n
n
n
be a natural number. Suppose that
x
0
=
0
x_0=0
x
0
=
0
and that
x
i
>
0
x_i>0
x
i
>
0
for all
i
∈
{
1
,
2
,
…
,
n
}
i\in\{1,2,\ldots ,n\}
i
∈
{
1
,
2
,
…
,
n
}
. If
∑
i
=
1
n
x
i
=
1
\sum_{i=1}^nx_i=1
∑
i
=
1
n
x
i
=
1
, prove that
1
≤
∑
i
=
1
n
x
i
1
+
x
0
+
x
1
+
…
+
x
i
−
1
x
i
+
…
+
x
n
<
π
2
1\leq\sum_{i=1}^{n} \frac{x_i}{\sqrt{1+x_0+x_1+\ldots +x_{i-1}}\sqrt{x_i+\ldots+x_n}} < \frac{\pi}{2}
1
≤
i
=
1
∑
n
1
+
x
0
+
x
1
+
…
+
x
i
−
1
x
i
+
…
+
x
n
x
i
<
2
π
Back to Problems
View on AoPS