MathDB
Logarithm

Source: 1998 National High School Mathematics League, Exam One, Problem 1

March 8, 2020
logarithms

Problem Statement

If a>1,b>1,lg(a+b)=lga+lgba>1,b>1,\lg(a+b)=\lg a+\lg b, then the value of lg(a1)+lg(b1)\lg(a-1)+\lg(b-1) is (A)lg2(B)1(C)0(D)\text{(A)}\lg2\qquad\text{(B)}1\qquad\text{(C)}0\qquad\text{(D)} not sure