MathDB
ineqyality with Σ x\sqrt{yz(x + my)(x + nz)}

Source: JBMO Shortlist 2007 A5

October 14, 2017
inequalitiesJBMOalgebra

Problem Statement

The real numbers x,y,z,m,nx,y,z, m, n are positive, such that m+n2m + n \ge 2. Prove that xyz(x+my)(x+nz)+yxz(y+mx)(y+nz)+zxy(z+mx)(x+ny)3(m+n)8(x+y)(y+z)(z+x)x\sqrt{yz(x + my)(x + nz)} + y\sqrt{xz(y + mx)(y + nz)} + z\sqrt{xy(z + mx)(x + ny) }\le \frac{3(m + n)}{8} (x + y)(y + z)(z + x)