MathDB
Problems
Contests
National and Regional Contests
France Contests
French Mathematical Olympiad
1991 French Mathematical Olympiad
Problem 2
limits of function on two variables
limits of function on two variables
Source: France 1991 P2
May 14, 2021
function
limit
algebra
Problem Statement
For each
n
∈
N
n\in\mathbb N
n
∈
N
, the function
f
n
f_n
f
n
is defined on real numbers
x
≥
n
x\ge n
x
≥
n
by
f
n
(
x
)
=
x
−
n
+
x
−
n
+
1
+
…
+
x
+
n
−
(
2
n
+
1
)
x
.
f_n(x)=\sqrt{x-n}+\sqrt{x-n+1}+\ldots+\sqrt{x+n}-(2n+1)\sqrt x.
f
n
(
x
)
=
x
−
n
+
x
−
n
+
1
+
…
+
x
+
n
−
(
2
n
+
1
)
x
.
(a) If
n
n
n
is fixed, prove that
lim
x
→
+
∞
f
n
(
x
)
=
0
\lim_{x\to+\infty}f_n(x)=0
lim
x
→
+
∞
f
n
(
x
)
=
0
. (b) Find the limit of
f
n
(
n
)
f_n(n)
f
n
(
n
)
as
n
→
+
∞
n\to+\infty
n
→
+
∞
.
Back to Problems
View on AoPS