MathDB
Miklós Schweitzer 2001 Problem 1

Source:

February 12, 2017
Miklos Schweitzerfunctionset theoryreal analysiscollege contests

Problem Statement

Let f ⁣:2SRf\colon 2^S\rightarrow \mathbb R be a function defined on the subsets of a finite set SS. Prove that if f(A)=F(S\A)f(A)=F(S\backslash A) and max{f(A),f(B)}f(AB)\max \{ f(A), f(B)\}\geq f(A\cup B) for all subsets A,BA, B of SS, then ff assumes at most S|S| distinct values.