MathDB
Highly recommended by the Problem Committee

Source: IMO Shortlist 1993, Indonesia 1

March 25, 2006
geometryratiocircumcircletrigonometryinequalitiesgeometric inequalityIMO Shortlist

Problem Statement

The vertices D,E,FD,E,F of an equilateral triangle lie on the sides BC,CA,ABBC,CA,AB respectively of a triangle ABC.ABC. If a,b,ca,b,c are the respective lengths of these sides, and SS the area of ABC,ABC, prove that DE22Sa2+b2+c2+43S. DE \geq \frac{2 \cdot \sqrt{2} \cdot S}{\sqrt{a^2 + b^2 + c^2 + 4 \cdot \sqrt{3} \cdot S}}.