MathDB
Problems
Contests
National and Regional Contests
India Contests
India IMO Training Camp
2024 India IMOTC
2
Asymmetric inequality
Asymmetric inequality
Source: India IMOTC 2024 Day 1 Problem 2
May 31, 2024
inequalities
Problem Statement
Let
x
1
,
x
2
…
,
x
2024
x_1, x_2 \dots, x_{2024}
x
1
,
x
2
…
,
x
2024
be non-negative real numbers such that
x
1
≤
x
2
⋯
≤
x
2024
x_1 \le x_2\cdots \le x_{2024}
x
1
≤
x
2
⋯
≤
x
2024
, and
x
1
3
+
x
2
3
+
⋯
+
x
2024
3
=
2024
x_1^3 + x_2^3 + \dots + x_{2024}^3 = 2024
x
1
3
+
x
2
3
+
⋯
+
x
2024
3
=
2024
. Prove that
∑
1
≤
i
<
j
≤
2024
(
−
1
)
i
+
j
x
i
2
x
j
≥
−
1012.
\sum_{1 \le i < j \le 2024} (-1)^{i+j} x_i^2 x_j \ge -1012.
1
≤
i
<
j
≤
2024
∑
(
−
1
)
i
+
j
x
i
2
x
j
≥
−
1012.
Proposed by Shantanu Nene
Back to Problems
View on AoPS