MathDB
Asymmetric inequality

Source: India IMOTC 2024 Day 1 Problem 2

May 31, 2024
inequalities

Problem Statement

Let x1,x2,x2024x_1, x_2 \dots, x_{2024} be non-negative real numbers such that x1x2x2024x_1 \le x_2\cdots \le x_{2024}, and x13+x23++x20243=2024x_1^3 + x_2^3 + \dots + x_{2024}^3 = 2024. Prove that
1i<j2024(1)i+jxi2xj1012.\sum_{1 \le i < j \le 2024} (-1)^{i+j} x_i^2 x_j \ge -1012.
Proposed by Shantanu Nene