MathDB
H 68

Source:

May 25, 2007
ratiocalculusDiophantine Equations

Problem Statement

Consider the system x+y=z+u,x+y=z+u, 2xy=zu.2xy=zu. Find the greatest value of the real constant mm such that mxym \le \frac{x}{y} for any positive integer solution (x,y,z,u)(x, y, z, u) of the system, with xyx \ge y.