MathDB
China Western Mathematical Olympiad 2015 ,Problem 3

Source: China Yinchuan Aug 16, 2015

August 16, 2015
inequalities

Problem Statement

Let the integer n2n \ge 2 , and x1,x2,,xnx_1,x_2,\cdots,x_n be positive real numbers such that i=1nxi=1\sum_{i=1}^nx_i=1 .Prove that(i=1n11xi)(1i<jnxixj)n2.\left(\sum_{i=1}^n\frac{1}{1-x_i}\right)\left(\sum_{1\le i<j\le n} x_ix_j\right)\le \frac{n}{2}.