MathDB
Problems
Contests
Undergraduate contests
Jozsef Wildt International Math Competition
2019 Jozsef Wildt International Math Competition
W. 6
Find the value of this integration
Find the value of this integration
Source: 2019 Jozsef Wildt International Math Competition-W. 6
May 18, 2020
integration
trigonometry
logarithms
calculus
Problem Statement
Compute
∫
π
6
π
4
(
1
+
ln
x
)
cos
x
+
x
sin
x
ln
x
cos
2
x
+
x
2
ln
2
x
d
x
\int \limits_{\frac{\pi}{6}}^{\frac{\pi}{4}}\frac{(1+\ln x)\cos x+x\sin x\ln x}{\cos^2 x + x^2 \ln^2 x}dx
6
π
∫
4
π
cos
2
x
+
x
2
ln
2
x
(
1
+
ln
x
)
cos
x
+
x
sin
x
ln
x
d
x
Back to Problems
View on AoPS