MathDB
Set and Function

Source: China TST 2003

June 29, 2006
functioncombinatorics unsolvedcombinatorics

Problem Statement

Let A={a1,a2,,an}A= \{a_1,a_2, \cdots, a_n \} and B={b1,b2,bn}B=\{b_1,b_2 \cdots, b_n \} be two positive integer sets and AB=1|A \cap B|=1. C={all the 2-element subsets of A}{all the 2-element subsets of B}C= \{ \text{all the 2-element subsets of A} \} \cup \{ \text{all the 2-element subsets of B} \}. Function f:AB{0,1,2,2Cn2}f: A \cup B \to \{ 0, 1, 2, \cdots 2 C_n^2 \} is injective. For any {x,y}C\{x,y\} \in C, denote f(x)f(y)|f(x)-f(y)| as the \textsl{mark} of {x,y}\{x,y\}. If n6n \geq 6, prove that at least two elements in CC have the same \textsl{mark}.