MathDB
Some Length Equality

Source: RMO 2024/5

November 3, 2024
geometrycyclic quadrilateral

Problem Statement

Let ABCDABCD be a cyclic quadrilateral such that ABCDAB \parallel CD. Let OO be the circumcenter of ABCDABCD and LL be the point on ADAD such that OLOL is perpendicular to ADAD. Prove that OB(AB+CD)=OL(AC+BD). OB\cdot(AB+CD) = OL\cdot(AC + BD).