MathDB
p-th root of rational numbers

Source: Iran 3rd round 2012-Algebra exam-P3

September 20, 2012
algebrapolynomialalgebra proposed

Problem Statement

Suppose pp is a prime number and a,b,cQ+a,b,c \in \mathbb Q^+ are rational numbers;
a) Prove that Q(ap+bp)=Q(ap,bp)\mathbb Q(\sqrt[p]{a}+\sqrt[p]{b})=\mathbb Q(\sqrt[p]{a},\sqrt[p]{b}).
b) If bpQ(ap)\sqrt[p]{b} \in \mathbb Q(\sqrt[p]{a}), prove that for a nonnegative integer kk we have bakpQ\sqrt[p]{\frac{b}{a^k}}\in \mathbb Q.
c) If ap+bp+cpQ\sqrt[p]{a}+\sqrt[p]{b}+\sqrt[p]{c} \in \mathbb Q, then prove that numbers ap,bp\sqrt[p]{a},\sqrt[p]{b} and cp\sqrt[p]{c} are rational.