MathDB
1/a_1+1/a_2+...+1/a_k -(1/b_1+1/b_2+...+1/b_k)<0.001

Source: Czech And Slovak Mathematical Olympiad, Round III, Category A 1998 p2

February 20, 2020
SumalgebraSubsets

Problem Statement

Given any set of 1414 (different) natural numbers, prove that for some kk (1k71 \le k \le 7) there exist two disjoint kk-element subsets {a1,...,ak}\{a_1,...,a_k\} and {b1,...,bk}\{b_1,...,b_k\} such that A=1a1+1a2+...+1akA =\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_k} and B=1b1+1b2+...+1bkB =\frac{1}{b_1}+\frac{1}{b_2}+...+\frac{1}{b_k} differ by less than 0.0010.001, i.e. AB<0.001|A-B| < 0.001