Let n≥2 be a natural. Define
X={(a1,a2,⋯,an)∣ak∈{0,1,2,⋯,k},k=1,2,⋯,n}.
For any two elements s=(s1,s2,⋯,sn)∈X,t=(t1,t2,⋯,tn)∈X, define
s∨t=(max{s1,t1},max{s2,t2},⋯,max{sn,tn})s∧t=(min{s1,t1},min{s2,t2,},⋯,min{sn,tn})
Find the largest possible size of a proper subset A of X such that for any s,t∈A, one has s∨t∈A,s∧t∈A.