MathDB
Maximal Proper Subset Closed under Operations

Source: China Team Selection Test 2016 Day 1 Q3

March 15, 2016
combinatoricsnumber theory

Problem Statement

Let n2n \geq 2 be a natural. Define X={(a1,a2,,an)ak{0,1,2,,k},k=1,2,,n}X = \{ (a_1,a_2,\cdots,a_n) | a_k \in \{0,1,2,\cdots,k\}, k = 1,2,\cdots,n \}. For any two elements s=(s1,s2,,sn)X,t=(t1,t2,,tn)Xs = (s_1,s_2,\cdots,s_n) \in X, t = (t_1,t_2,\cdots,t_n) \in X, define st=(max{s1,t1},max{s2,t2},,max{sn,tn})s \vee t = (\max \{s_1,t_1\},\max \{s_2,t_2\}, \cdots , \max \{s_n,t_n\} ) st=(min{s1,t1},min{s2,t2,},,min{sn,tn})s \wedge t = (\min \{s_1,t_1 \}, \min \{s_2,t_2,\}, \cdots, \min \{s_n,t_n\}) Find the largest possible size of a proper subset AA of XX such that for any s,tAs,t \in A, one has stA,stAs \vee t \in A, s \wedge t \in A.