MathDB
Polynomial inequality

Source:

October 4, 2010
algebrapolynomialInequalityTaylor seriesIMO ShortlistIMO Longlist

Problem Statement

(USS3)(USS 3) (a)(a) Prove that if 0a0a1a2,0 \le a_0 \le a_1 \le a_2, then (a0+a1xa2x2)2(a0+a1+a2)2(1+12x+13x2+12x3+x4)(a_0 + a_1x - a_2x^2)^2 \le (a_0 + a_1 + a_2)^2\left(1 +\frac{1}{2}x+\frac{1}{3}x^2+\frac{1}{2}x^3+x^4\right) (b)(b) Formulate and prove the analogous result for polynomials of third degree.