MathDB
Turkey TST 2010 Q4

Source:

September 1, 2010
modular arithmeticnumber theory proposednumber theory

Problem Statement

Let 0k<n0 \leq k < n be integers and A={a:ak(modn)}.A=\{a \: : \: a \equiv k \pmod n \}. Find the smallest value of nn for which the expression am+3ma23a+1 \frac{a^m+3^m}{a^2-3a+1} does not take any integer values for (a,m)A×Z+.(a,m) \in A \times \mathbb{Z^+}.