MathDB
Easy Trigonometric Identity - ILL 1970 - Problem 14.

Source:

May 24, 2011
trigonometry

Problem Statement

Let α+β+γ=π\alpha + \beta +\gamma = \pi. Prove that cycsin2α=2(cycsinα)(cyccosα)2cycsinα\sum_{cyc}{\sin 2\alpha} = 2\cdot \left(\sum_{cyc}{\sin \alpha}\right)\cdot\left(\sum_{cyc}{\cos \alpha}\right)- 2\sum_{cyc}{\sin \alpha}.