MathDB
min |AX|+|BX|+|CX|+|DX| for tetrahedron ABCD

Source: Czech and Slovak Olympiad 1988, National Round, Problem 3

September 13, 2024
geometry3D geometrytetrahedrongeometric inequality

Problem Statement

Given a tetrahedron ABCDABCD with edges AD=BC=a|AD|=|BC|= a, AC=BD=b|AC|=|BD|=b, AB=cAB=c and CD=d|CD| = d. Determine the smallest value of the sum AX+BX+CX+DX|AX|+|BX|+|CX|+|DX|, where XX is any point in space.