MathDB
Trigonometric equation always has root - OIMU 2006 Problem 2

Source:

August 30, 2010
functiontrigonometryratioarithmetic sequencealgebra proposedalgebra

Problem Statement

Prove that for any positive integer nn and any real numbers a1,a2,,an,b1,b2,,bna_1,a_2,\cdots,a_n,b_1,b_2,\cdots,b_n we have that the equation a1sin(x)+a2sin(2x)++ansin(nx)=b1cos(x)+b2cos(2x)++bncos(nx)a_1 \sin(x) + a_2 \sin(2x) +\cdots+a_n\sin(nx)=b_1 \cos(x)+b_2\cos(2x)+\cdots +b_n \cos(nx) has at least one real root.