MathDB
Problems
Contests
National and Regional Contests
Sweden Contests
Swedish Mathematical Competition
1982 Swedish Mathematical Competition
2
abc >= (a+b-c)(b+c-a)(c+a-b) for a,b,c>0
abc >= (a+b-c)(b+c-a)(c+a-b) for a,b,c>0
Source: 1982 Swedish Mathematical Competition p2
March 28, 2021
algebra
inequalities
Problem Statement
Show that
a
b
c
≥
(
a
+
b
−
c
)
(
b
+
c
−
a
)
(
c
+
a
−
b
)
abc \geq (a+b-c)(b+c-a)(c+a-b)
ab
c
≥
(
a
+
b
−
c
)
(
b
+
c
−
a
)
(
c
+
a
−
b
)
for positive reals
a
a
a
,
b
b
b
,
c
c
c
.
Back to Problems
View on AoPS