MathDB
analysis

Source: miklos schweitzer 1993 q7

October 22, 2021
Hilbert SpaceFunctional Analysis

Problem Statement

Let H be a Hilbert space over the field of real numbers R\Bbb R. Find all f:HRf: H \to \Bbb R continuous functions for which f(x+y+πz)+f(x+2z)+f(y+2z)+f(πz)f(x + y + \pi z) + f(x + \sqrt{2} z) + f(y + \sqrt{2} z) + f (\pi z) =f(x+y+2z)+f(x+πz)+f(y+πz)+f(2z)= f(x + y + \sqrt{2} z) + f (x + \pi z) + f (y + \pi z) + f(\sqrt{2} z) is satisfied for any x,y,zHx , y , z \in H.