MathDB
Putnam 1947 A2

Source: Putnam 1947

April 3, 2022
Putnamfunctionalgebrafunctional equation

Problem Statement

A real valued continuous function ff satisfies for all real xx and yy the functional equation f(x2+y2)=f(x)f(y). f(\sqrt{x^2 +y^2 })= f(x)f(y). Prove that f(x)=f(1)x2.f(x) =f(1)^{x^{2}}.