MathDB
Problems
Contests
National and Regional Contests
China Contests
(China) National High School Mathematics League
2016 China Second Round Olympiad
Number Theory
Number Theory
Source: 2016 China Second Round Olympiad Problem 4
January 8, 2017
Sequence
number theory
Problem Statement
Let
p
p
p
and
p
+
2
p+2
p
+
2
be primes,
p
>
3
p>3
p
>
3
. Sequence
{
a
n
}
:
a
1
=
2
,
a
n
=
a
n
−
1
+
⌈
p
a
n
−
1
n
⌉
\{a_n\}:a_1=2,a_n=a_{n-1}+\left\lceil{\frac{pa_{n-1}}{n}}\right\rceil
{
a
n
}
:
a
1
=
2
,
a
n
=
a
n
−
1
+
⌈
n
p
a
n
−
1
⌉
. Prove that
n
∣
p
a
n
−
1
+
1
n\mid pa_{n-1}+1
n
∣
p
a
n
−
1
+
1
for all
n
=
3
,
4
,
…
,
p
−
1
n=3,4,\dots,p-1
n
=
3
,
4
,
…
,
p
−
1
.
Back to Problems
View on AoPS