MathDB
0611 inequality 6th edition Round 1 p1

Source:

May 3, 2021
inequalities6th edition

Problem Statement

Let a,b,c a, b, c be positive real numbers such that bc+ca+b=1, bc +ca +b = 1, . Prove that 1+b2c2(b+c)2+1+c2a2(c+a)2+1+a2b2(a+b)252. \frac {1 +b^2c^2}{(b +c)^2} + \frac {1+ c^2a^2}{(c + a)^2} +\frac {1 +a^2b^2}{(a +b)^2} \geq \frac {5}{2}.